195. The Light Absorption of Pyrroles. Part II.* Infrared Spectra.

By Ulli Eisner and R. L. Erskine.

The infrared spectra of a number of pyrroles have been measured. The relation between structure and $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}=\mathrm{O}$ frequencies is discussed. A band in the $1470-1600 \mathrm{~cm} .^{-1}$ region, present in all the pyrroles examined, is assigned to bond-stretching vibrations of the ring.

The infrared and Raman spectra of substituted pyrroles show some anomalies, particularly a lowering of the $\mathrm{C}=\mathrm{O}$ stretching frequency in carbonyl-substituted pyrroles. Although data for a number of pyrroles have been recorded ${ }^{1-9}$ comparatively little has been done to interpret the results and establish correlations. Since a number of pyrroles were available to us, their infrared spectra have been determined. The present work, however, is not a systematic study since there are not sufficient data for mono- and di-substituted derivatives.

The carbonyl-stretching frequency of $\alpha \beta$-unsaturated β-amino-ketones (I) occurs at lower frequencies than that of ordinary $\alpha \beta$-unsaturated ketones as the nitrogen atom
(I) $\mathrm{R}^{1} \mathrm{R}^{2} \mathrm{~N} \cdot \mathrm{CH}=\mathrm{CH} \cdot \mathrm{COR}^{3} \quad \mathrm{R}^{1} \mathrm{R}^{2} \mathrm{~N}^{+}=\mathrm{CH} \cdot \mathrm{CH}=\mathrm{CR}^{3} \cdot \mathrm{O}^{-} \quad$ (II)
stabilises the dipolar form ${ }^{10}$ (II). Carbonyl-substituted pyrroles can also exist in dipolar forms (III, IV) which shift the carbonyl band to lower frequencies, 2- and 3-carbonyl

(III)

substituents being similarly affected. The hydrogen atom on the nitrogen is not essential for this perturbation ${ }^{1,4,7,10}$ and this has been confirmed in our work, since the 1 -methylpyrrole ($\mathbf{1 7} \dagger$) has the same carbonyl-stretching frequency as the 1 -unsubstituted analogue (16). Intramolecular hydrogen bonding is excluded in the 2 -substituted compounds (see below).

Furan and thiophen derivatives containing carbonyl substituents show similar shifts ${ }^{3,11,12}$ which are less pronounced than those observed for the corresponding pyrroles.

* Part I, J., 1958, 922.
\dagger This and similar Arabic numbers in parentheses refer to the numbers in the Table.
${ }^{1}$ Ansidei, Atti Accad. naz. Lincei, Rend. Classe Sci. fis. mat. nat., 1940, 11, 669.
${ }^{2}$ Bonino and Chiorboli, ibid., 1951, 10, 104.
${ }^{3}$ Chiorboli, ibid., 1952, 12, 92, 558.
4 Bonino and Mirone, ibid., 1954, 17, 167, 254.
${ }^{5}$ Mirone, Drusiani, and Lorenzelli, Ann. Chim. (Italy), 1956, 46, 1217.
${ }^{8}$ Nicolaus and Oriente, Gazzetta, 1954, 84, 230.
${ }^{7}$ Nicolaus and Mangoni, ibid., 1955, 85, 1378.
${ }^{8}$ Scrocco and Nicolaus, Atti Accad. naz. Lincei, Rend. Classe Sci. fis. mat. nat., 1956, 20, 795.
${ }^{9}$ Idem, ibid., 1956, 21, 103.
${ }^{10}$ Cromwell, Miller, Johnson, Frank, and Wallace, J. Amer. Chem. Soc., 1949, 71, 3337.
11 Mirone, Atti Accad. naz. Lincei, Rend. Classe Sci. fis. mat. nat., 1954, 16, 483.
12 Chiorboli and Mirone, ibid., p. 243.

The infrared measurements for chloroform solution and for the solid state are summarised in the Table. This shows separately the $\mathrm{N}-\mathrm{H}$ bands, bands in the $\mathrm{C}=\mathrm{O}$ stretching region and at $1600-1475 \mathrm{~cm} .^{-1}$, and other marked bands in the " finger-print" region. The apparent maximal extinction coefficients are given in parentheses for measurements on solutions representing intensities more accurately than the symbols s(strong), m(medium), and w (weak). The estimated error is about $\pm 5 \%$, and all measurements were made from the $100 \% T$ line except for the " free " NH band where some attempt was made to cancel out the absorption due to the " bonded " NH band when this was present.

The solid-state spectra (paraffin mulls) showed a marked inconsistency between very similar compounds which must be due to the intermolecular bonding effects in the crystals. This was especially noticeable in the pairs (13) and (14), and (5) and (6), where the difference in structure was due only to the alkyl substituents. Consequently identification of these compounds from their solid-state spectra is not to be recommended and only solution spectra give consistent results.

The discussion of the spectra therefore concerns solution results unless otherwise indicated. Bands in the $3000-2775$ and $1480-1330 \mathrm{~cm}^{-1}$ ranges are not quoted because they were masked by solvent bands in solution and by the $\mathrm{C}-\mathrm{H}$ bands in paraffin. Similarly bands below $800 \mathrm{~cm} .^{-1}$ for chloroform solution are not recorded owing to the absorption of the solvent.

The $\mathrm{N}^{-} \mathrm{H}$ Stretching Region.-In chloroform solution the $\mathrm{N}-\mathrm{H}$ absorption appears as a sharp band in the range $3435-3400 \mathrm{~cm} .^{-1}$. The $\mathrm{N}^{-} \mathrm{H}$ stretching frequency of pyrrole itself in carbon tetrachloride is a little higher at $3488 \mathrm{~cm} .^{-1}$; there appears to be a small solvent effect as this frequency is lowered by $13 \mathrm{~cm} .^{-1}$ in chloroform solution. Since the $\mathrm{N}-\mathrm{H}$ stretching frequency is not appreciably altered by the presence of 2 -carbonyl substituents, intramolecular hydrogen bonding is ruled out and this absorption is therefore due to the " free " $\mathrm{N}-\mathrm{H}$ group.

In the solid state the $\mathrm{N}-\mathrm{H}$ stretching frequency occurs in a much wider range at lower frequencies, viz., $3315-3085 \mathrm{~cm} .^{-1}$. There is no apparent relation between the position of this bonded $\mathrm{N}-\mathrm{H}$ absorption and the chemical nature of the substituents, although large 2 -substituents [cf. compounds (7), (13), (14), (22)] seem to hinder intermolecular hydrogen bonding of the $\mathrm{N}-\mathrm{H}$ group, giving weak hydrogen bonds with higher frequencies, whereas stronger hydrogen bonds are formed when the 2 -substituents are small [cf. (15), (12)].

Scrocco and Nicolaus ${ }^{9}$ have shown that there is a linear relationship between the $\mathrm{p} K_{a}$ value of the pyrrole and the difference, Δv, in the frequency of the free and bonded $\mathrm{N}-\mathrm{H}$ vibrations, both determined in solution. While we have not determined any $\mathrm{p} K_{a}$ values, our Δv values correspond in magnitude to those given by Scrocco and Nicolaus. In those spectra where the bonded $\mathrm{N}-\mathrm{H}$ band was visible, the largest Δv value was given by compound (37) with $210 \mathrm{~cm} .^{-1}$ and the smallest by (3) with $115 \mathrm{~cm} .^{-1}$.

Our determinations were made with a rock-salt prism and the estimated error in frequency is about $\pm 10 \mathrm{~cm} .^{-1}$ so that the extent of the range of the $\mathrm{N}-\mathrm{H}$ frequency, particularly in solution, is probably due to experimental error rather than to real differences in the positions of the $\mathrm{N}-\mathrm{H}$ stretching frequencies. As a check on the accuracy of our results the $\mathrm{N}-\mathrm{H}$ frequency of pyrrole was redetermined; it was found to be in excellent agreement with the results recorded by Fuson. ${ }^{13}$ A discrepancy was noted between our results and those of Scrocco and Nicolaus ${ }^{9}$ for pyrroles (16) and (31) even after corrections for solvent effect were made. Similarly our $\mathrm{N}-\mathrm{H}$ frequencies were found to be lower than the values recorded by Mirone et al. ${ }^{5}$ for pyrroles (28), (29), and (31). Since the above workers used a lithium fluoride prism it is likely that the differences observed are due to this.

The Carbonyl Stretching Region.-A comparison of the solution and the solid-state spectra in the carbonyl-stretching region near $1670 \mathrm{~cm} .^{-1}$ shows a marked dissimilarity in
${ }_{13}$ Fuson, Josien, Powell, and Utterback, J. Chem. Phys., 1952, $20,145$.
the absorption. This is probably due to intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bonding and consequently solid-state spectra do not give consistent results even among similar compounds as the carbonyl-stretching frequency depends on the packing and hydrogen bonding in the crystals. Mirone, Drusiani, and Lorenzelli ${ }^{5}$ have found similar inconsistencies in a series of substituted pyrrole aldehydes. The solution spectra give much more consistent results which will now be discussed.

The pyrrolic monoesters (4), (5), (6), and (10) have essentially the same carbonylstretching frequency irrespective of whether the ester group is in the 2 - or 3 -position. This indicates that the dipolar forms (III) and (IV) can be formed with equal ease, and hence that it is not possible to determine the position of a pyrrolic carbonyl substituent from the $\mathrm{C}=\mathrm{O}$ stretching frequency. Similarly the $\mathrm{C}=\mathrm{O}$ frequency of the 2 -acetyl derivative (11) lies very close to that of the 3 -acetylpyrrole (12). The ketones absorb at a frequency about $40 \mathrm{~cm} .^{-1}$ lower than that of the esters, the shift being of the same order as that observed in normal ketones and esters.

Pyrroles carrying two ester groups, (13-17), give rise to one asymmetrical carbonylstretching band. This is probably due to the fact that the two ester groups absorb at frequencies very close to each other so that the bands are not resolved. As both the symmetrical $2: 5$-diesters (13), (14), and the $3: 4$-diester (15) have asymmetric carbonyl bands, there must be weak mechanical interaction between the two vibrations rather than preferential perturbation of one of the ester groups which might be postulated, for example, with diethyl $2: 4$-dimethylpyrrole-3 : 5-dicarboxylate (16). Mechanical interaction would be strongest when the two ester groups are in adjacent positions in the ring and this is confirmed by our data, although the triester (30) appears to be abnormal in this respect.

The spectrum of one 1 -substituted pyrrole (17) was recorded to confirm (cf. refs. 1, 4, 7) that the hydrogen attached to the nitrogen atom is not essential for the perturbation, and to rule out the possibility of hydrogen bonding between the $\mathrm{N}-\mathrm{H}$ group and adjacent 2 -carboxyl substituent. The carbonyl-stretching frequency of diethyl 1:2:4-trimethyl-pyrrole-3:5-dicarboxylate (17) is identical with that of diethyl 2:4-dimethylpyrrole-3:5-dicarboxylate (16).

Pyrroles (23-29), containing both ester and carbonyl groups, have a much more complex absorption, giving rise to two, and sometimes three or more, bands. Mirone et al. ${ }^{5}$ have differentiated four types of carbonyl frequencies in a series of pyrrolic ester-aldehydes in the solid state which are called "associated" and " unassociated" ester and aldehyde bands, but there is not sufficient evidence in our work for such a definitive assignment.

The dipyrrylmethanes (8) and (9) show the expected shift of the carbonyl band in solution, but in the solid state strong intermolecular hydrogen-bonding splits the bands into two sharp maxima at $1688,1644 \mathrm{~cm} .^{-1}$ and $1699,1647 \mathrm{~cm} .^{-1}$ respectively.

The pyrrolic nitriles $(36-40)$ absorb normally and there appears to be no effect of the pyrrole ring on the stretching frequency of the $\mathrm{C} \equiv \mathrm{N}$ group. This frequency at about $2230 \mathrm{~cm} .^{-1}$ is comparable with the $\mathrm{C} \equiv \mathrm{N}$ stretching frequency of benzonitrile ${ }^{14}$ also at $2230 \mathrm{~cm} .^{-1}$.

The effect of alkyl substituents on the $\mathrm{C}=\mathrm{O}$ frequency has not been fully elucidated, chiefly owing to the lack of data. Mirone et al. ${ }^{5}$ found that, in the solid state, the $\mathrm{C}=\mathrm{O}$ frequency is lowered by increasing alkyl-substitution. We have confirmed this effect in the case of the trisubstituted monoester (4) which absorbs at $1678 \mathrm{~cm} .^{-1}$ and the tetrasubstituted monoesters (5) and (6) which absorb at $1669 \mathrm{~cm} .^{-1}$ in chloroform. However, there is a slight increase in the $\mathrm{C} \equiv \mathrm{N}$ band when going from the trisubstituted nitrile (36) $\left(2229 \mathrm{~cm} .^{-1}\right)$ to the tetrasubstituted derivatives (37) and (38) which absorb at 2237 and $2234 \mathrm{~cm} .^{-1}$ respectively.

The $1600-1470 \mathrm{~cm} .^{-1}$ Region.-All the compounds which have been examined have absorption in the $1600-1470 \mathrm{~cm} .^{-1}$ region which generally consists of two bands of variable intensity and position. In most cases, one band was near $1565 \mathrm{~cm} .^{-1}$ and the other near

[^0]| No. R^{1} | R^{2} | Infrared maxima (cm. ${ }^{-1}$) of pyrroles ($\mathrm{C}=\mathrm{in} \cdot \mathrm{CHCl}_{3}, \mathrm{~N}=\mathrm{in} \mathrm{Nujol}$) | | | | | | |
 Other bands |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | R^{3} | R^{4} | R^{5} | | $\stackrel{\mathrm{N}-\mathrm{H}}{\text { stretching }}$ | $\begin{gathered} \mathrm{C}=\mathrm{O} \\ \text { stretching } \end{gathered}$ | 1600-1475 | |
| 1 H | H | H | H | H | C | 3475 * | | | |
| 2 H | H | Et | Et | H | | $3370 \mathrm{~s}^{\text {b }}$ | | 1564w 1516w | 1070s 1035 m 950 w 891 m 797 m 778 m |
| 3 H | \cdot | Et | Et | H | c | 3425 m 3310 m | | 1623m | $1299 \mathrm{~m} \mathrm{1154w} 1113 \mathrm{~m} 1088 \mathrm{~m} 1049 \mathrm{~m} 985 \mathrm{w} 877 \mathrm{w}$ |
| 4 H | $\mathrm{CO}_{2} \mathrm{Et}$ | Me | H | Me | C | $\begin{aligned} & 3435(117) \\ & 3251 \mathrm{~m} \end{aligned}$ | $\begin{aligned} & 1678(500) \\ & 1657 \mathrm{~s} \end{aligned}$ | $1585(77) 1548(84)$
 1575w 1545w | 1100(307) 1020(52) 1011(59) 928(62) 1269 s 1215 s 1101 s 1025 m 801 s |
| 5 H | $\mathrm{CO}_{2} \mathrm{Et}$ | Me | Me | Me | $\stackrel{C}{\mathrm{C}}$ | $\begin{aligned} & 3420(119) \\ & 3241 \mathrm{~m} \end{aligned}$ | $\begin{aligned} & 1669(456) \\ & 1668 \mathrm{~s} \end{aligned}$ | $\begin{aligned} & 1495 \mathrm{w} \\ & 1585(35) 1497(171) \\ & 1548 \mathrm{w} 1499 \mathrm{w} \end{aligned}$ | 1323(106) 1110(260) 1065(161) 926(125)
 127 ls 1223 m 1175 m 1121 m 1112 m 1025 m 773 s 761s |
| 6 H | $\mathrm{CO}_{2} \mathrm{Et}$ | Et | Et | Me | $\stackrel{\mathrm{C}}{\mathrm{~N}}$ | $3420(115)$
 3448w 3273m | $\begin{aligned} & 1669(569) \\ & 1709 \mathrm{w} 1664 \mathrm{~s} \end{aligned}$ | $\begin{aligned} & 1576(55) 1493(171) \\ & 1496 \mathrm{~m} \end{aligned}$ | $1120(284)$ 1095(149) 1083(218) 1022(189)
 1277s 1259 s 1170 m 1122 m 1098 m 1029 m 776 m |
| 7 H | $\mathrm{CO}_{2} \mathrm{Et}$ | Me | Me | $\mathrm{CH}_{2} \cdot \mathrm{OMe}$ | N | ${ }_{3257 \mathrm{~m}}^{348}$ | 1669 s | 1545w 1497w ${ }^{\circ}$ | 1270 s 1245 s 1121 s 1085 s 1021 m 951 m 774 m |
| 8 Substance $\mathrm{A}^{\text {d }}$ | | | - | | C | 3415(125) 3290(63) | 1674(880) | $\begin{aligned} & 1600(71) 1580(71) \\ & 1493 \mathrm{sh} \end{aligned}$ | 1297(265) $1151(218) 1096(352) 1064(234) 941(71)$ |
| | | | | | N | 3315 m | 1688s 1644s | 1581w 1501sh | $\underset{\substack{1308 \mathrm{~s} \\ 675 \mathrm{w}}}{ } 1279 \mathrm{~s}$ 1260s 1221 s 1134 s 1103 m 768 m |
| 9 Substance B | | | - | - | C | 3420(166) 3290sh | 1680(1060) | $\begin{aligned} & 1603(106) 1580(71) \\ & 1493 \mathrm{sh} \end{aligned}$ | $1299(310)$ $1017(115)$ $1152(267)$$\quad 1111(297) \quad 1072(356)$ |
| | | | | | N | 3305m | 1694s 1647s | 1577w 1501sh | 1302 m 1280s 1254 s 1224 m 1139 s 1110 m 1083 m 1019 m 768 m 723 w |
| 10 H | Me | $\mathrm{CO}_{2} \mathrm{Et}$ | Me | H | $\underset{\mathrm{N}}{\mathrm{C}}$ | $\begin{aligned} & 3420(125) 3268(14) \\ & 3273 \mathrm{~m} \end{aligned}$ | $1683(538)$ $1667 \mathrm{~s}$ | $\left.\begin{array}{l} 1575(53) 1511(41) \\ 1580 \mathrm{~m} 1521(421 \\ 1506 \end{array}\right\} \mathrm{dbtw}$ | 1319(233) 1116(385) 1079(310)
 ${ }_{733 \mathrm{~s}} 1264 \mathrm{~s}$ 1131s 1093 s 1019 m 788 m 745 m |
| 11 H | Ac | H | H | H | C | 3420(122) 3236(22)
 3210 m | $\begin{aligned} & 1642(439) \\ & 1639 \mathrm{~s} \end{aligned}$ | 1538(105) 1508(57)
 1542 m 1501 w | 1316(173) 1140(87) 1109(180) 1038(137) 925(56)
 1140 m 1127 m 1042 m 972 m 926 m 841 m 773 |
| 12 H | Me | Ac | Me | H | C | 3435(80) 3250(43) | 1637(437) | 1563(105) | 750 s $1325(66)$ 1052(43) $941(123)$ |
| | | | | | N | 3190 m | 1617s | 1576 w 1508w | 1239m 1071w 1021w 943 m 752 m |
| 13 H | $\mathrm{CO}_{2} \mathrm{Et}$ | Me | Me | $\mathrm{CO}_{2} \mathrm{Et}$ | $\stackrel{\mathrm{C}}{\mathrm{~N}}$ | $\begin{aligned} & 3420(130) \\ & 3450 \mathrm{w} 3250 \mathrm{~m} \end{aligned}$ | $\begin{aligned} & 1691(841) \\ & 1714\} \text { dbt s } \end{aligned}$ | 1565(73) 1499sh
 1564w 1505sh | 1140(400) 1091(263) 1017(142)
 1269s 1253s 1193m 1138m 1019m 783m |
| 14 H | $\mathrm{CO}_{2} \mathrm{Me}$ | Et | Et | $\mathrm{CO}_{2} \mathrm{Me}$ | C | 3425(137) | 1707(920) | 1560(134) | 1143(335) 1087(246) $1062(83) 1016(61)$ 983(77) |
| | | | | | N | 3425w 3245m | 1718sh 1700s | 1546 m | 1254 s 1135 m 1085 m 982 m 786 s |
| 15 H | H | $\mathrm{CO}_{2} \mathrm{Et}$ | $\mathrm{CO}_{2} \mathrm{Et}$ | H | C | 3430(125) 3265(51) | 1723(565) 1695sh | 1519(152) | $\begin{array}{llll} 1326(279) & 1286(635) & 1175(302) & 1134(231) \end{array}$ |
| 16 H | Me | $\mathrm{CO}_{2} \mathrm{Et}$ | | | N | 3205 m | 1711s 1694sh | 1526 m | 1284 s 1197m 1136m 1055s 813 m 768 s |
| | | | Me | $\mathrm{CO}_{2} \mathrm{Et}$ | C | ${ }_{3210 \mathrm{~m}}^{3420(116)} 3265(20)$ | ${ }_{1686}^{1681(764)}$ | ${ }_{1570 \mathrm{w}}^{1572(164) 1504(155)}$ | ${ }_{1}^{1111(208)}$ (195s $1085(452) 1073(445) 1018(87)$ |
| | | | | | | 3210 m | $\left.{ }_{1668}^{1686}\right\} \mathrm{dbt} \mathrm{~s}$ | 1570w 1506w | 1260s 1195s 1086s 1025m 893m 787m 773m |
| 17 Me | Me | $\mathrm{CO}_{2} \mathrm{Et}$ | Me | $\mathrm{CO}_{2} \mathrm{Et}$ | C | - | 1681(1030) | 1541(144) 1477(224) | $1152(496) 1110(385) 1091(534) 1048(106)$ |
| 18 H | CHCl_{2} | $\mathrm{CO}_{2} \mathrm{Et}$ | Me | $\mathrm{CO}_{2} \mathrm{Et}$ | ${ }_{\text {c }}$ | 3400(113) | 1718s 178 1691(782) | ${ }_{1564(153)}^{1535 \mathrm{~m}} 1473(210)$ | |

1276s 1235 m 1206s 1072 s 1024 m 850 m 776 m
1258 s 1082 m 1028 m 790 m 778 m 731 m
1275 s 1238 m 1207 s 1079 m 1053 m 1025 m 772 s
1078(67) 1050(100) 1020(32) 988(49) 921(80)
1311 m 1222 s 1062 m 1054 m 1003 m 970 m 882 m
114(207) 1089(189) 1062(77) 1015(136) 960(34)
$\underset{256 \mathrm{~s}}{\mathbf{9 2 2}} \mathbf{1 1 3 3 \mathrm { m }} 1024 \mathrm{~m} 834 \mathrm{~m} 756 \mathrm{~s}$
$\begin{array}{cccc}\begin{array}{c}1288(151) \\ 1028(51)\end{array} & 1259(193) & 1170(489) \quad 1089(386)\end{array}$
1327 m 1289 m 1268 m 1174 s 1084 m 1014 m 777 m

1096w 936m 817m 723w 683w
1088w 965m 909s 780m 747m 723w

d Substance A,
Me. OH band. di-(5-ethoxycarbonyl-3-ethyl-4-methyl-2-pyrryl)methane. ${ }^{f} \mathrm{CO}_{2} \cdot \mathrm{CO}_{2} \mathrm{Me} .{ }^{\circ} \mathrm{OH}$ band.
$1500 \mathrm{~cm} .^{-1}$. Pyrrole itself has absorption at 1575,1561 , and $1531 \mathrm{~cm} .^{-1}$ which has been ascribed to the asymmetrical and symmetrical vibrations of the double bonds in the pyrrole ring. ${ }^{15}$ These vibrations would be expected to depend considerably on the substitution of functional groups which would affect the symmetry of the molecule, and hence the position and intensity of these bands. Although there appears to be no empirical relation between the positions of the bands and the substitution on the pyrrole ring, it seems that the band near $1565 \mathrm{~cm} .^{-1}$ is most intense when the functional substitution is at positions $2: 4$ or $3: 4$, and weakest in the $2: 5$-disubstituted pyrroles. This might be expected from a consideration of the symmetry of these vibrations.

Cromwell et al. ${ }^{10}$ also found strong absorption in this region in $\alpha \beta$-unsaturated β-aminoketones which was ascribed to a modified $\mathrm{C}=\mathrm{C}$ or $\mathrm{C}-\mathrm{N}$ stretching vibration similar to the amide II band. However, the absorption bands of the carbonyl-substituted pyrroles are of only weak or medium intensity and so the assignment to a ring vibration, similar to that in pyrrole itself, is preferred.

Experimental.--The spectra were recorded on a Grubb-Parsons D.B.I. double-beam infrared spectrometer with sodium chloride optics. Solid-state spectra were determined as paraffin mulls and solution spectra in chloroform using solutions of concentration about $0.5 \% \mathrm{w} / \mathrm{v}$ in a 0.5 mm . cell.

The preparation of the pyrroles was described in Part I. In addition, the pyrrole (4) was prepared as in ref. 16 and the pyrroles (6) and (27) as in ref. 17.

We are indebted to Professor C. Rimington, F.R.S., for a gift of pyrroles (19), (20), (21); to Dr. R. P. Linstead, C.B.E., F.R.S., for pyrroles (25) and (36-40); and to Dr. J. A. Elvidge for the compounds (11), (22), (23). The work was carried out with the financial support (to U. E.) from the Rockefeller Foundation to whom thanks are offered.

[^1][^2]
[^0]: ${ }^{14}$ Kitson and Griffith, Analyt. Chem., 1952, 24, 334.

[^1]: Imperial College of Science and Technology, South Kensington, London, S.W.7.
 Borough Polytechnic, Borough Road, London, S.E.1.
 [Received, July 11th, 1957.]

[^2]: 15 Mirone, Gazzetta, 1956, 86, 165.
 ${ }^{18}$ Eisner, Linstead, Parkes, and Stephen, J., 1956, 1655.
 17 Eisner, Lichtarowicz, and Linstead, J., 1957, 733.

